US009064477B2

a2 United States Patent

Lawrence

US 9,064,477 B2
*Jun. 23, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM AND METHOD FOR SPRITE
CAPTURE AND REPRODUCTION
(71) Applicant: Bally Gaming, Inc., Las Vegas, NV
(US)
(72)

Inventor: James Lawrence, Henderson, NV (US)

(73) Assignee: Bally Gaming, Inc., Las Vegas, NV

(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/517,519

Filed: Oct. 17, 2014

(65) Prior Publication Data

US 2015/0035845 Al Feb. 5, 2015

Related U.S. Application Data

Continuation of application No. 12/617,681, filed on
Nov. 12, 2009, now Pat. No. 8,866,834.

(63)

Int. CI.
G09G 5/00
G09G 5/42
GOG6T 13/80
AG3F 13/52
AG3F 13/55
GO6T 11/00
GOG6T 15/04
USS. CL
CPC .. G09G 5/42 (2013.01); GO9G 5/00 (2013.01);
GO6T 13/80 (2013.01); A63F 13/52 (2014.09):
AG3F 13/55 (2014.09); GO6T 11/001
(2013.01); GO6T 15/04 (2013.01)

(51)
(2006.01)
(2006.01)
(2011.01)
(2014.01)
(2014.01)
(2006.01)
(2011.01)
(52)

(58) Field of Classification Search
CPC AG63F 2003/00842; GO6T 15/04
USPC 345/629, 419, 522, 582; 710/8; 463/40,
463/30;382/235
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,982,398 A 11/1999 Yamamoto
6,037,988 A * 3/2000 Guetal. ... 375/240.16
7,054,496 B2 5/2006 Miceli et al.
7,480,743 B2 1/2009 Yu et al.
7,916,147 B2 3/2011 Clemie et al.
2004/0077404 Al 4/2004 Schlottmann et al.
2004/0104916 Al 6/2004 Hong et al.
2006/0077208 Al* 4/2006 Aoki ...cccocoovevecieinin 345/582
2006/0202985 Al 9/2006 Kobayashi et al.
(Continued)

Primary Examiner — Phi Hoang
(74) Attorney, Agent, or Firm — Brooke W. Quist; Marvin A.
Hein; Philip J. Anderson

(57) ABSTRACT

A sprite capture and reproduction system for a gaming
machine is disclosed. The system includes a sprite capture
component and a sprite reproduction component. The sprite
capture component enables capture of a sprite in video
memory for use as another sprite. The sprite reproduction
component enables reproduction of independent animated
images that are combinable in a larger animation. The system
does not require a discrete texture for each and every image
that is loaded. In some cases, images may be compresses,
further reducing video memory requirements. Additionally,
the system dramatically increases likelihood that desired
images are resident and available for use in video memory,
thereby saving texture memory. Further, the system mini-
mizes shadow RAM usage.

10 Claims, 7 Drawing Sheets

ISprIte(‘.‘anvas“ Image “_S‘pr/te‘lmagE"VIdeoC/ient| Slideo ‘SSp‘rfte "SS;irite;Image\

New Handle}

! 1 |

ﬂew Canvas! : I
|

New Canvag

1

e
New Canvas | (hangle)

retun _[17~ "
Newlmage(fileName, notexture)

(
|

! &l
__rdm J?‘ i
NewSpritelmage(Image;

! Newsprtelmage(ir]gHan

T ‘ Newlmage | New Handle,
T
‘ ! ! Image{notexture)
: ! | Reply(size] | > Nes
| retum(Size)

levppritelmage(Image)
il

i
I
I
I
} New Te xtura:
|
|
|
i
I
I
|

NawppriteImage{imgHanle)
lew SSprite

|
1
i
|
i
|
|
i
I
|
W Handle

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
!
1
!
1
|
i
1
I
!
1
|
|
|
|
§

T NEdSpritelmagg(imgHandi

1 E.){—

! Lo remm__]j
ﬂ]"e,tuzﬂ,ﬂ‘

t

lj__’e@’l_ I i '

retum | | I
I A ! I ' I
i i '

US 9,064,477 B2
Page 2

(56)

U.S. PATENT DOCUMENTS

2007/0019003 Al

References Cited

1/2007 Imai et al.

2007/0115288 Al 5/2007 Cronin et al.
2008/0171597 Al 7/2008 Anderson et al.
2010/0105454 Al 4/2010 Weber et al.

* cited by examiner

US 9,064,477 B2

Sheet 1 of 7

Jun. 23, 2015

U.S. Patent

ysel \
pedwo)

EN=S)

yseld
peduwo) 5o

AL
pieq

144

vz =" |

ainpoy
paInIas

WY

zr
8z
woy V%
—
SOWD _} 486 A
#5019 L
b4
piea [)d uo
(Wy¥sqg) .ﬁ%
NdD

IJE]

U.S. Patent Jun. 23,2015 Sheet 2 of 7 US 9,064,477 B2

FIG. 2

Sprite

+Sprite(in name:const char*,in parent Sprite,in position:Point, in size:Size,in zOrder:int, in flags:int)
+Show(in visible:bool=true)

+Move(in dx:Int. in dy:int)

+HandleEvent(in event:AnEvent, in target.Sprite): AnEvent

1

Spritelmage. Sprite

+Sprite(In name:const char*,in parent.Sprite, In Image, in position:Point,In 20rder: int, in flags:Int)
+Setimage(in image.Image)

Image

+Image(in fileName:cons char*.in flags:int)

FIG. 3

SpriteCanvas: Sprite

+SpriteCanvas(in name.const char*,in parent:Sprite,in size:Size, in position:Point, Int, in flags:Int)

U.S. Patent Jun. 23,2015 Sheet 3 of 7 US 9,064,477 B2

FIG. 4

GameApp| |SpriteCanvas| | Image ||SpriteImage||VideoClient SVideo SSprite ||SSpriteImage

] 1 I] | I | !
1 |
! |
1 |
ew Canvag |

|

!
|
i

New Handle

\
|

\

|

' New Texture}
New Canvas, (hangle) |
|

\

\

\

|

|

|

|
|
: return

1
| return
|

ﬂn-ﬁf-

' n
l 1 x
' | |
l | |
* | |
f | |
* |

|
|
|
N
| |
| |
| |
| |
i : turmn S
| rewrn_ 1| Ij !
| [NewSptheImage nﬁgHandle |]
|
|
|
|
|
|
|
|

|
I;]‘___;_LEE’L”_JP____
return | | |
I |New1mage(|iIeName,@téxture) : |
‘ Nl NewlImage }

New Handle,
| I
|) NImage (notexture)

| Reply(size| New Handle
returj (Size) | p

x
|
!
|
\
l
|
|
|
!
|

(o]

retirn |

|
|
|
t
1
|
|
1
’ |
__*

NewSpriteImage(Image) o ' | 1

l

\
\
\
}
|
|
|
|
|

Ne SpnteImagq(lmgHandIe

r@uﬁrnﬁ : |

return _| | , }

|] l |
|

| !

!
!
'3
b=
13
!
|
|

‘ return
R S
i i

U.S. Patent Jun. 23,2015 Sheet 4 of 7 US 9,064,477 B2

FIG. 5

SVideo SSprite SImage SSpriteImage TextureMgr

1

1

i

i i T

| | |

| | |

| Move(dx.dy) ! o :

| : : Dirty() |

| |
1 | | Set New Position

| | | |

o fﬂ____reiug]____} _________ Dirty() :

' I | | | |

I | | |

! | | |

Clear Dirty transparent areas : |

| | I

Bill Dirty Chlildren to Surface Buffer }

|

GetImageData I : :

| return B : ;

| |

| \

|

!

| GetTextureResource |

return 1

A“
S
1
{7

=
wn
o
3,
o
o
(3]
2
(e}
_|
D
>
~—+
fo
o 1
D

U.S. Patent

Jun. 23, 2015 Sheet 5 of 7
Update Sprite
Update Sprite
Normally

Clear Dirty Area That
Does not have a Child
Sprite in Front

Y
For each Child

Y

Determine Source and
Destination Rectangle
as intersection of Image
are and Dirty Region

there an
Offscreen
Image
?

Yes

Y

Get Image Data From Get Image Data From
Texture surface Memory Data

+ +

Render with Alpha Blending to Surface Buffer

Y

Blit Surface To Dirty
Area of Output Texture

Y
Draw Texture To Screen

US 9,064,477 B2

FIG. 6

U.S. Patent Jun. 23,2015 Sheet 6 of 7 US 9,064,477 B2

FIG. 7 i
Al
200 212 =
TN 204
A==
=070/7 |[FN
? @ @ ,i? N 202
- ,nu]” 206
v/@l — ’]”l"'a é/7j\._/ 206
,HII]‘
\ ““hul"' ////
l]“l

| ""]! i ////,

U.S. Patent Jun. 23,2015 Sheet 7 of 7 US 9,064,477 B2

Pt .
302~ |&= —
A= 304 ~ =5
T | —

US 9,064,477 B2

1
SYSTEM AND METHOD FOR SPRITE
CAPTURE AND REPRODUCTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/617,681, filed Nov. 12, 2009, which is incor-
porated herein in its entirety.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever.

FIELD

This disclosure relates generally to a gaming system and,
more particularly, to a system and methodology for providing
enhanced video capabilities without significantly increasing
CPU usage or memory requirements.

BACKGROUND

Video can use a large amount of memory in gaming appli-
cations. In this regard, newer and more advanced video tech-
nologies can require even larger amounts of memory. Such
large memory requirements can dramatically increase overall
costs and efficiency. Traditionally, every image loaded
requires a texture, which draws memory, typically from video
memory. Using video memory needlessly drains this limited
resource away from other applications that are of a higher
priority to gaming systems. Accordingly, it would be desir-
able to use more advanced video technologies with the same
or lower memory requirements as legacy server.

SUMMARY

Briefly, and in general terms, various embodiments are
directed to a sprite capture and reproduction system for a
gaming machine. A sprite is a graphic image that can move
within a larger graphic image. The system includes a sprite
capture component and a sprite reproduction component. The
sprite capture component enables capture of a sprite in video
memory for use as another sprite. The sprite reproduction
component enables reproduction of independent, animated
images that are combinable in a larger animation. In some
cases, the sprite may include a compressed image. The system
does not require a discrete texture for each and every image
that is loaded. Additionally, the system dramatically increases
the likelihood that the desired images are resident and avail-
able for use in video memory, thereby saving texture memory.
Further, the system minimizes shadow RAM usage.

In one embodiment of the sprite capture and reproduction
system, the system enables games to use advanced video
technologies while maintaining the same or even lower
memory usage than with a legacy video server. This is
achieved through the use of enhanced texture management.
Moreover, the system enables game applications to use an
image on a shared texture, thereby reducing the memory
usage. Additionally, by saving video memory for more inten-

10

15

20

25

30

40

45

50

55

60

2

sive video and graphic image content, operating performance
may be increased by using the sprite capture and reproduction
system.

Other features and advantages will become apparent from
the following detailed description, taken in conjunction with
the accompanying drawings, which illustrate by way of
example, the features of the various embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of the components of a
gaming device.

FIG. 2 illustrates a pre-existing Sprite class diagram.

FIG. 3 illustrates a new class SpriteCanvas being added.

FIG. 4 is a sequence diagram that illustrates a Sprite Can-
vas API implementation for a simple case of a SpriteCanvas
with a single SpriteImage child.

FIG. 5illustrates a canvas being rendered as an extension of
an existing the SSprite Update loop.

FIG. 6 is flow chart of the logic for the rendering.

FIG. 7 illustrates one embodiment of a gaming device
including the secured module for validating the BIOS.

FIG. 8 illustrates one embodiment of a gaming system
network including the gaming devices of FIG. 7.

DETAILED DESCRIPTION

Various embodiments disclosed herein are directed to gam-
ing devices having a system and method for Sprite Capture
and Reproduction. In computer graphics, a Sprite is an image
or animation that is integrated into a larger scene (i.e., a
graphic image that can move within a larger graphic). Ani-
mation software that supports sprites enables a designer to
develop independent animated images that can then be com-
bined in a larger animation. The Sprite Capture and Repro-
duction System removes the requirement from more
advanced video technologies of a texture for each and every
image loaded. Textures require a lot of memory, even in the
rare cases when texture compression is used. This texture
memory is expensive and not always needed. By saving tex-
ture memory, the Sprite Capture and Reproduction System
dramatically increases the likelihood that desired images are
resident in video memory. The Sprite Capture and Reproduc-
tion System also saves on shadow RAM usage. The Sprite
Capture and Reproduction System has the ability to capture
one sprite to another.

In one embodiment, the Sprite Capture and Reproduction
System is a sprite canvas API that provides a software inter-
face for games to render to an area of a graphics memory
which is referred to as a “canvas.” Prior to the advent of the
Sprite Capture and Reproduction System, video services used
a canvas for each and every bitmap, which was wasteful of
memory. The Sprite Capture and Reproduction System
abstracts away the exact memory address upon which to be
written. Unfortunately, without an API to the graphics card’s
memory, each and every BINK requires a canvas (e.g., video
card memory) and texture memory (RAM). The Sprite Cap-
ture and Reproduction System, which comprises a canvas
API, saves memory by providing an API to programmatically
control and reduce the number of canvases and/or textures
needed for a game application. For example, if a game has 50
pay-lines images at 10K apiece, then instead of needing S00K
of video memory only 10K is needed.

By utilizing better texture management, the Sprite Capture
and Reproduction System enables games to use advanced
video technologies with the same or even lower memory
usage than the legacy video server. This is achieved, atleast in

US 9,064,477 B2

3

part, by removing the requirement of a texture for each and
every image loaded. The Sprite Capture and Reproduction
System enables game applications to use an image on a shared
texture, thus reducing the memory usage. Moreover, by sav-
ing video memory for more intensive content, the perfor-
mance may actually increase. Referring now to the drawings,
wherein like reference numerals denote like or corresponding
parts throughout the drawings and, more particularly to FIGS.
1-6, there are shown various embodiments of a gaming sys-
tem employing a Sprite Capture and Reproduction System.

FIG. 1 illustrates a block diagram of the components 12 of
a gaming device 10. The components 12 comprise, for
example, and not by way of limitation, software or data file
components, firmware components, hardware components,
or structural components of the gaming machine 10. These
components include, without limitation, one or more proces-
sors 14, a hard disk device 16, volatile storage media such as
random access memories (RAMs) 18, read-only memories
(ROMs) 20 or electrically-erasable, programmable ROMs
(EEPROMS) such as basic input/output systems (BIOS) 22.
Additionally, the gaming device 10 includes a secured mod-
ule 24. The secured module is a hardware component that is
one-time programmable. One or more security algorithms
may be provided on the secured module. The security algo-
rithm generates a challenge (e.g., generates a random num-
ber), calculates an expected response to the challenge, and
determines the validity of the BIOS based on the response to
the challenge provided by the BIOS. In one embodiment, the
secured module is a field-programmable gate array (FPGA).
In another embodiment, the secured module is a trusted plat-
form module (TPM).

In one embodiment, components 12 also include data files
(which are any collection of data, including executable pro-
grams in binary or script form, and the information those
programs operate upon), gaming machine cabinets (hous-
ings) 26, displays 28, or compact disk read-only memory
(CDROM) or CD read-write (CR-RW) storage. In one
embodiment, the data files may include data storage files,
software program files, operating system files, and file allo-
cation tables or structures. Ports 30 are included with the
gaming machine 10 for connection to diagnostic systems 32
and other input/output devices 34. In one embodiment, the
ports 30 each comprise a serial port, universal serial bus
(USB) port, parallel port or any other type of known port,
including a wireless port. Preferably, each of the components
12 have embedded or loaded in them identification numbers
or strings that can be accessed by the processor 14, including
the processor 14 itself, which are utilized for authentication as
explained below. In one embodiment, the components that are
data files each use their file path and name as their identifica-
tion number or string.

Either within the gaming machine 10, or in the diagnostic
system 32 attachable to the gaming machine 10, are execut-
able instructions or a software program 36 for authentication
of the components (authentication software 36), which itself
may be one of the components 12 to authenticate if it is
internal to the gaming machine 10. In one embodiment,
authentication software 36 is stored on a persistent storage
media such as the hard disk device 16, ROM 20, EEPROM, in
a complementary metal oxide semiconductor memory
(CMOS) 38, in safe RAM comprising a battery-backed static
random access memory (BBSRAM) 40, in flash memory
components 42, 44, or other type of persistent memory. In one
embodiment, the authentication software 36 is stored in a
basic input/output system (BIOS) 22 device or chip. BIOS
chips 22 have been used for storing prior authentication soft-
ware, such as previous versions of the BIOS+ chip used by

10

15

20

25

30

35

40

45

50

55

60

65

4

Bally Gaming Systems, Inc. of Las Vegas, Nev. in their EVO
gaming system. Placing the authentication software 36 in the
BIOS 22 is advantageous because the code in the BIOS 22 is
usually the first code executed upon boot or start-up of the
gaming machine 10, making it hard to bypass the authentica-
tion process. Alternatively, in one embodiment, the authenti-
cation software 36 is stored in a firmware hub (FWH), such as
Intel’s 82802 FWH.

As alternative, instead of, or in conjunction with, the hard
disk device, another mass storage device is used, such as a
CD-ROM, CD-RW device, a WORM device, a floppy disk
device, a removable type of hard disk device, a ZIP disk
device, a JAZZ disk device, a DVD device, a removable flash
memory device, or a hard card type of hard disk device.

It should be noted that the term, gaming device, is intended
to encompass any type of gaming machine, including hand-
held devices used as gaming machines such as cellular based
devices (e.g. phones), PDAs, or the like. The gaming device
can be represented by any network node that can implement a
game and is not limited to cabinet based machines. The sys-
tem has equal applicability to gaming machines implemented
as part of video gaming consoles, or handheld, or other por-
table devices. In one embodiment, a geo-location device in
the handheld or portable gaming device may be used to locate
a specific player for regulatory and other purposes. Geo-
location techniques that can be used include by way of
example, and not by way of limitation, IP address lookup,
GPS, cell phone tower location, cell 1D, known Wireless
Access Point location, Wi-Fi connection used, phone number,
physical wire or port on client device, or by middle tier or
backend server accessed. In one embodiment, GPS and bio-
metric devices are built within a player’s client device, which
in one embodiment, comprises a player’s own personal com-
puting device, or provided by the casino as an add-on device
using USB, Bluetooth, IRDA, serial or another interface to
the hardware to enable jurisdictionally-compliant gaming,
ensuring the location of play and the identity of the player. In
another embodiment, the casino provides an entire personal
computing device with these devices built in, such as a tablet
type computing device, PDA, cell phone or other type of
computing device capable of playing system games.

Referring now to FIGS. 2-6, in one implementation of the
Sprite Capture and Reproduction System help images may be
loaded as “no-texture” images. Then, a single texture may be
used to display all help images. Help screens are not perfor-
mance intensive, but typically occupy a full screen, and thus,
significant memory may be saved by using the Sprite Capture
and Reproduction System for Help screens. In one embodi-
ment, the use of the Sprite Capture and Reproduction System
for Help screens saves an average 30 MB per game.

In another scenario, the Sprite Capture and Reproduction
System may be implemented for use with paylines. In this
embodiment, the Sprite Capture and Reproduction System
loads the payline images as “no-texture” images. Accord-
ingly, in this implementation a single texture may be used to
display all paylines. The resulting memory savings of about
70MB for a game with 50 paylines that are 1.5 MB apiece
may be achieved. Notably, paylines compress extremely
effectively, hence a shared texture object with compressed
images for the paylines uses relatively no memory at all in
comparison.

With respect to texture management, when using the Sprite
Capture and Reproduction System an image loaded with a
“no-texture” flag set does not create a texture. Conversely, an
image loaded without a “no-texture” flag set does create a
texture. In one embodiment of the Sprite Capture and Repro-
duction System, to render “no-texture” images, the images

US 9,064,477 B2

5

are added to a “Sprite Canvas” or a member of a descendant
of the Sprite Canvas’s hierarchy tree.

Referring now specifically to FIG. 2, a pre-existing Sprite
class diagram is shown. With respect to FIG. 3, a new class
“Sprite Canvas” is shown being added.

In this embodiment, the “Sprite Canvas” is derived from a
Sprite with a new constructor only. The construction of a
Sprite Canvas is shown below.

@param name name of the sprite

(@param parent parent sprite

(@param size size of the canvas

(@param position position of the sprite relative to parent.

@param zOrder z order of the sprite

@param flags flags
SpriteCanvas(const char*name, Sprite*parent, Size size,
Point position, int zOrder, int

flags=visibleltransparentlautosizelcompressed)

Referring now to another aspect of the Sprite Capture and
Reproduction System, implementation of this system and/or
method typically results in the reproduction of parent/child
relationships between Sprites. Traditionally, a “Sprite Image”
utilizes the texture created from the image. When using the
Sprite Capture and Reproduction System, since it is possible
that an image may not have a texture, there are four cases to
consider pertaining to what texture may be used be a Sprite.

Case 1: parent Sprite, Image empty flags—Current usage,
rendered to image texture.

Case 2: parent Canvas, Image no-texture—New function-
ality desired, rendered to canvas texture.

Case 3: parent Sprite, Image no-texture flags—Usage
error, image not rendered

Case 4: parent Canvas, Image empty flags—Usage error,
blit to canvas texture, texture wasted.

With respect to the background of an image, a “Sprite
Canvas” is an initially empty container. Sprites that are added
to the canvas fill up the canvas area. Any area not covered by
a sprite is transparent.

The Sprite Capture and Reproduction System enables a
sprite to be captured and utilized by another sprite. For
example, in one non-limiting embodiment, a game has a base
game and a bonus screen. When transitioning from the base
game to the bonus game, the base game screen is captured to
a sprite using the Sprite Capture and Reproduction System.
Subsequently, that Sprite may be alpha blended with a bonus
game screen Sprite. The alpha blending is much more effi-
cient than requiring the server to loop through all Sprites in
the background to order to perform the alpha blending. The
blending is also efficient because the captured base game
image and the bonus game image can reside on the graphics
card with a single paired call to the board to:

basegame->SetAlpha(x), bonusgame->SetAlpha(inverse
of x).

The hardware also supports this action.

In one specific, non-limiting embodiment of the Sprite
Capture and Reproduction System, the API (application pro-
gram interface) to capture a Sprite is given as follows:

Captures a sprite to the canvas.

(@param sprite sprite to capture.

void SpriteCanvas:: Setlmage(Sprite*sprite).

In such an embodiment, the input sprite hierarchy is enu-
merated, capturing the results to the canvas. The resulting
image must be stored somewhere, so the image then becomes
the background for the canvas, such that the image is written
by any area not covered by a child sprite. For convenience, the
capture background may be set by an image. Unless a “Set”
call is made on a canvas, the background is empty, as already
alluded to in the previous section.

10

15

20

25

30

40

45

50

55

60

65

6

Captures an image to the canvas.

(@param sprite image to capture.

void SpriteCanvas::Setlmage(Image*sprite).

Referring now to FIG. 4, a sequence diagram is shown that
illustrates a Sprite Canvas API implementation for a simple
case of a Sprite Canvas with a single Sprite Image child. The
usage may be as the help screen example, where several
“no-texture” Images are loaded and passed to the Sprite:
Image::Setimage call. The server implementation basically
extends the server side SSprite/SSpritelmage implementa-
tion. The canvas sprite is an SSprite member of the root sprite
like any other sprite, except it is flagged as a canvas. The
SSpritelmage already has a texture that it renders to as a data
member.

Children of the Canvas Sprite that are “no-texture” also
extend existing implementation. The texture object already
has an Image object as a data member. Accordingly, the
texture object is modified to not create texture memory if the
flag of “no-texture” is passed in. Thus, when a client Image is
loaded, the Texture object only creates an Image object. In
this manner, the Canvas Sprite may obtain image data for
“no-texture” images.

Inone embodiment of the Sprite Capture and Reproduction
System, the canvas is rendered as an extension of the existing
the SSprite Update loop. The SSprite checks if its flags con-
tains “Sprite Canvas.” If so, it is a Sprite Canvas. The update
then continues by updating all of its children to a surface
buffer. When the surface buffer is completely updated, the
surface buffer is rendered to the texture. The surface buffer is
maintained such that only dirty rectangles are processed for
source image decoding and texture blitting.

Referring now to FIG. 5, a canvas is rendered as an exten-
sion of an existing sprite using the SSprite Update loop that is
shown. With respect to FIG. 6, a flow chart is shown of the
logic for the rendering. The following example of a data
schema illustrates how to use the pay screens.

/// Load Images
for (loop = 0; loop(totalPaytablePictures; loop++)

iPaysImages [loop] = new Image(filedefs=>PaysScreenFilename(loop),
notexture);

// Create Window
// Create our window for displaying history.
sPayWindow = new SpriteWindow ("myPays", null, Rect (40, 60, 1360,
768),
sGame=>Order + filedefs->PaysZOrder (), visible | enabled);

sPayWindow->Enable ();
sPayWindow->Align(horzLeft, vertTop);
sPayWindow->SetEventHandler (DispatchPaysEvent);
sPayCanvas = new SpriteCanvas (“MyPayCanvas”,

sPayWindow,

image_ptr->size,

Point (0, 0),

sPayWindow->zOrder+2);
sPayMovie = new Sprite Image (“see-pays”,

sPayCanvas,

image_ptr,

Point (0, 0),

sPayWindow->zOrder + 3,

visible | autosize);
sPayWindow->Enable ();
sPayWindow->Align(horzLeft, vertTop);
sPayWindow->SetEventHandler (DispatchPaysEvent);
// Update Pay Screen
sPayMovie->SetImage(iPayslmages [paysCurrentPage]);

The following data schema shows payline reproduction.
FIG. 7 illustrates one embodiment of a gaming device
including the secured module for validating the BIOS. Turn-

US 9,064,477 B2

7

ing to FIG. 7, the main cabinet 204 of the gaming machine
200 is a self-standing unit that is generally rectangular in
shape. In another embodiment, the main cabinet 204 may be
a slant-top gaming cabinet. Alternatively, in other embodi-
ments, the gaming cabinet may be any shaped cabinet known
or developed in the art that may include a top box. Addition-
ally, the cabinet may be manufactured with reinforced steel or
other rigid materials that are resistant to tampering and van-
dalism. Optionally, in an alternate embodiment, the gaming
machine 200 may instead be a cinema-style gaming machine
(not shown) having a widescreen display, as disclosed in U.S.
application Ser. No. 11/225,827, entitled “Ergonomic Gam-
ing Cabinet,” filed on Sep. 12, 2005, which is hereby incor-
porated by reference.

As shown in FIG. 7, the gaming machine 200 includes a
main display 202. According to one embodiment, the main
display 202 is a plurality of mechanical reels for presenting a
slot-style game. Alternatively, the main display 202 is a video
display for presenting one or more games such as, but not
limited to, mechanical slots, video slots, video keno, video
poker, video blackjack, video roulette, Class II bingo, games
of'skill, games of chance involving some player skill, or any
combination thereof.

According to one embodiment, the main display 202 is a
widescreen display (e.g., 16:9 or 16:10 aspect ratio display).
In one embodiment, the display 202 is a flat panel display
including by way of example only, and not by way of limita-
tion, liquid crystal, plasma, electroluminescent, vacuum fluo-
rescent, field emission, LCOS (liquid crystal on silicon), and
SXRD (Silicon Xtal Reflective display), or any other type of
panel display known or developed in the art. These flat panel
displays may use panel technologies to provide digital quality
images including by way of example only, and not by way of
limitation, EDTV, HDTV, or DLP (Digital Light Processing).

According to one embodiment, the widescreen display 202
may be mounted in the gaming cabinet 204 in a portrait or
landscape orientation. In another embodiment, the game dis-
play 202 may also include a touch screen or touch glass
system (not shown). The touch screen system allows a player
to input choices without using any electromechanical buttons
206. Alternatively, the touch screen system may be a supple-
ment to the electromechanical buttons 206.

The main cabinet 204 of the gaming machine also houses a
game management unit (not shown) that includes a CPU,
circuitry, and software for receiving signals from the player-
activated buttons 206 and a handle (not shown), operating the
games and transmitting signals to the respective game display
206 and speakers (not shown). Additionally, the gaming
machine includes an operating system such as Bally Gam-
ing’s Alpha OS, as disclosed in U.S. Pat. No. 7,278,068,
which is hereby incorporated by reference.

In various embodiments, the game program may be stored
in a memory (not shown) comprising a read-only memory
(ROM), volatile or non-volatile random access memory
(RAM), ahard drive or flash memory device or any of several
alternative types of single or multiple memory devices or
structures.

As shown in FIG. 7, the gaming machine 200 includes a
plurality of player-activated buttons 206. These buttons 206
may be used for various functions such as, but not limited to,
selecting a wager denomination, selecting a number of games
to be played, selecting the wager amount per game, initiating
a game, or cashing out money from the gaming machine 200.
The buttons 206 function inputs mechanisms and may
include mechanical buttons, electromechanical buttons or
touch screen buttons. In another embodiment, one input
mechanism is a universal button module that provides a

10

15

20

25

30

35

40

45

50

55

60

65

8

dynamic button system adaptable for use with various games,
as disclosed in U.S. application Ser. No. 11/106,212, entitled
“Universal Button Module”, filed Apr. 14, 2005 and U.S.
application Ser. No. 11/223,364, entitled “Universal Button
Module”, filed Sep. 9, 2005, which are both hereby incorpo-
rated by reference. Additionally, other input devices, such as
but not limited to, touch pad, track ball, mouse, switches, and
toggle switches are included with the gaming machine to also
accept player input. Optionally, a handle (not shown) may be
“pulled” by a player to initiate a slots-based game.

One of ordinary skill in the art will appreciate that not all
gaming devices will have all these components or may have
other components in addition to, or in lieu of, those compo-
nents mentioned here. Furthermore, while these components
are viewed and described separately, various components
may be integrated into a single unit in some embodiments.

In some embodiments, the gaming machine 200 is part of a
gaming system connected to or used with other gaming
machines as well as other components such as, but not limited
to, a Systems Management Server (SMS) and a loyalty club
system (e.g., casino management personnel/system (CMP/
CMS)). Typically, the CMS/CMP system performs casino
player tracking and collects regular casino floor and player
activity data. The gaming system may communicate and/or
transfer data between or from the gaming machines 200 and
other components (e.g., servers, databases, verification/au-
thentication systems, and/or third party systems).

An embodiment of a network that may be used with the
system is illustrated in FIG. 8. The example network consists
of a top-level, vender distribution point 300 that contains all
packages for all jurisdictions, one or more Jurisdiction distri-
bution points 302 and 304 that contain regulator approved
production signed packages used within that jurisdiction or
sub-jurisdiction, one or more Software Management Points
306 and 308 to schedule and control the downloading of
packages to the gaming machine, and one or more Software
Distribution Points 310 and 312 that contain regulator
approved production signed packages only used in the gam-
ing establishment that it supports. The Software Distribution
Points (SDPs) 310 and 312 can communicate with Systems
Management Points (SMPs) 314 and 316, respectively as
well as directly to one or more gaming machines 318 and 320.
The system allows for rapid and secure distribution of new
games, configurations, and OS’s from a centralized point. It
makes it possible to update and modify existing gaming
machines with fixes and updates to programs as well as pro-
viding modifications to such files as screen images, video,
sound, pay tables and other gaming machine control and
support files. It provides complete control of gaming
machines from a centralized control and distribution point
and can minimize the need and delay of human intervention at
the gaming machine. In one embodiment, the configuration
control may be from the SDPs 101 or 104 or from the gaming
servers 103.

The various embodiments described above are provided by
way of illustration only and should not be construed to limit
the claimed invention. Those skilled in the art will readily
recognize various modifications and changes that may be
made to the claimed invention without following the example
embodiments and applications illustrated and described
herein, and without departing from the true spirit and scope of
the claimed invention, which is set forth in the following
claims.

What is claimed:
1. A sprite capture and reproduction system for a gaming
machine having one or more processors and at least a base

US 9,064,477 B2

9

game, wherein a sprite is a graphic image that can move
within a larger graphic image, the system comprising:

a sprite canvas API that reduces a number of canvases and
textures needed for the base game;

a sprite capture component, wherein the sprite capture
component and a processor enable capture of a com-
pressed sprite in video memory for use as another sprite
accessed by a sprite interface; and

a sprite reproduction component, wherein the sprite repro-
duction component and a processor enable reproduction
of independent animated images displayed on the gam-
ing machine that are combinable in a larger animation;

wherein an image of the independent animated images is
reproduced using the captured sprite;

wherein a no-texture image is rendered by adding the no-
texture image to a member of a descendent of a sprite
canvas’s hierarchy tree.

2. The system of claim 1, wherein the system does not use
additional memory for rendering images using the sprite cap-
ture component and the sprite reproduction component.

3. The system of claim 1, wherein the system enables game
applications to use an image on the shared texture, thereby
reducing the memory usage.

4. The system of claim 1, wherein, when the system loads
an image with a no-texture flag set, the system does not create
a texture.

5. The system of claim 1, wherein, when the system loads
an image without a no-texture flag set, the system does create
a texture.

6. The system of claim 1, wherein help images are loaded
as no-texture images, and wherein a single texture is used to
display all help images.

7. The system of claim 1, wherein the system is imple-
mented for use with paylines.

8. The system of claim 1, wherein the system loads payline
images as no-texture images, and wherein a single texture is
used to display all paylines.

9. A sprite capture and reproduction system for a gaming
machine having one or more processors and at least a base

10

20

25

30

35

10

game, wherein a sprite is a graphic image that can move
within a larger graphic image, the system comprising:

a sprite canvas API that reduces a number of canvases and
textures needed for the base game;

a sprite capture component, wherein the sprite capture
component and a processor enable capture of a com-
pressed sprite in video memory for use as another sprite
accessed by a spite interface; and

a sprite reproduction component, wherein the sprite repro-
duction component and a processor enable reproduction
of independent animated images displayed on the gam-
ing machine that are combinable in a larger animation,
wherein an image of the independent animated images is
reproduced using the captured sprite;

wherein a bonus game uses at least one image of the base
game on a shared texture to thus reduce memory usage;

wherein a no-texture image is rendered by adding the no-
texture image to a member of a descendent of a sprite
canvas’s hierarchy tree.

10. A sprite capture and reproduction method for a gaming

machine having one or more processors and at least a base
game, wherein a sprite is a graphic image that can move
within a larger graphic image, the method comprising:

providing a sprite canvas API that reduces a number of
canvases and textures needed for the base game;

capturing of a compressed sprite in video memory for use
as another sprite accessed by a sprite interface; and

reproducing independent animated images displayed on
the gaming system that are combinable in a larger ani-
mation, wherein a discrete texture for each and every
image that is loaded is not required;

wherein an image of the independent animated images is
reproduced using a processor, and the captured sprite;

wherein a bonus game uses at least one image of the base
game on a shared texture to thus reduce memory usage;

wherein a no-texture image is rendered by adding the no-
texture image to a member of a descendent of a sprite
canvas’s hierarchy tree.

#* #* #* #* #*

